65 research outputs found

    Automated NDT inspection for large and complex geometries of composite materials

    Get PDF
    Large components with complex geometries, made of composite materials, have become very common in modern structures. To cope with future demand projections, it is necessary to overcome the current non-destructive testing (NDT) bottlenecks encountered during the inspection phase of manufacture. This thesis investigates several aspects of the introduction of automation within the inspection process of complex parts. The use of six-axis robots for product inspection and non-destructive testing systems is the central investigation of this thesis. The challenges embraced by the research include the development of a novel controlling approach for robotic manipulators and of novel path-planning strategies. The integration of robot manipulators and NDT data acquisition instruments is optimized. An effective and reliable way to encode the NDT data through the interpolated robot feedback positions is implemented. The viability of the new external control method is evaluated experimentally. The observed maximum position and orientation errors are respectively within 2mm and within 1 degree, over an operating envelope of 3m³. A new software toolbox (RoboNDT), aimed at NDT technicians, has been developed during this work. RoboNDT is intended to transform the robot path-planning problem into an easy step of the inspection process. The software incorporates the novel path-planning algorithms developed during this research and is shaped to overcome practical limitations of current OLP software. The software has been experimentally validated using scans on real high value aerospace components. RoboNDT delivers tool-path errors that are lower than the errors given by commercial off-line path-planning software. For example the variability of the standoff is within 10 mm for the tool-paths created with the commercial software and within 4.5 mm for the RoboNDT tool-paths, over a scanned area of 1.6m². The output of this research was used to support a 3-year industrial project, called IntACom and led by TWI on behalf of major aerospace sponsors. The result is a demonstrator system, currently in use at TWI Technology Centre, which is capable of inspecting complex geometries with high throughput. The IntACom system can scan real components 2.8 times faster than traditional 3-DoF scanners deploying phased-array inspection and 6.7 times faster than commercial gantry systems deploying traditional single-element inspection.Large components with complex geometries, made of composite materials, have become very common in modern structures. To cope with future demand projections, it is necessary to overcome the current non-destructive testing (NDT) bottlenecks encountered during the inspection phase of manufacture. This thesis investigates several aspects of the introduction of automation within the inspection process of complex parts. The use of six-axis robots for product inspection and non-destructive testing systems is the central investigation of this thesis. The challenges embraced by the research include the development of a novel controlling approach for robotic manipulators and of novel path-planning strategies. The integration of robot manipulators and NDT data acquisition instruments is optimized. An effective and reliable way to encode the NDT data through the interpolated robot feedback positions is implemented. The viability of the new external control method is evaluated experimentally. The observed maximum position and orientation errors are respectively within 2mm and within 1 degree, over an operating envelope of 3m³. A new software toolbox (RoboNDT), aimed at NDT technicians, has been developed during this work. RoboNDT is intended to transform the robot path-planning problem into an easy step of the inspection process. The software incorporates the novel path-planning algorithms developed during this research and is shaped to overcome practical limitations of current OLP software. The software has been experimentally validated using scans on real high value aerospace components. RoboNDT delivers tool-path errors that are lower than the errors given by commercial off-line path-planning software. For example the variability of the standoff is within 10 mm for the tool-paths created with the commercial software and within 4.5 mm for the RoboNDT tool-paths, over a scanned area of 1.6m². The output of this research was used to support a 3-year industrial project, called IntACom and led by TWI on behalf of major aerospace sponsors. The result is a demonstrator system, currently in use at TWI Technology Centre, which is capable of inspecting complex geometries with high throughput. The IntACom system can scan real components 2.8 times faster than traditional 3-DoF scanners deploying phased-array inspection and 6.7 times faster than commercial gantry systems deploying traditional single-element inspection

    experimental tests on new titanium alloy interbody cervical cages

    Get PDF
    Abstract Degenerative diseases of the spine, when not solvable with clinical treatments or with suitable stabilization systems, can be cured by means of the technique of arthrodesis through the interbody fusion of two or more vertebrae. The paper deals with the tests carried out on commercial and innovative cervical cages, used in the primary stabilization of the vertebrae, able to maintain the right distance and to assure the interbody fusion. Additive manufacturing (AM) is a powerful new tool offering the necessary competitiveness to the biomedical manufacturing companies, having the possibility to create materials with controlled porosity combined with solid parts, providing to the workpiece excellent capacity in the subsequent phases of osseointegration. Based on the knowledge developed either in the biomechanics of the spine or in the properties of biocompatibility and osseointegration of titanium alloys, MT Ortho has developed some models of cervical cage made from modern additive printing techniques with titanium alloy. Three different cervical cage made of different materials were subjected to static compression test: a commercial cervical intervertebral cage in PEEK and two cervical intervertebral cages in Ti alloy produced by the EBM process by MT Ortho. Tests on the innovative cage produced by EBM have shown encouraging results. From this first preliminary analysis its showed that the mechanical and functional failure of the innovative devices made in melted Ti alloy by EBM is achieved by load values greater than physiological ones of the cervical spine

    Robotic non-destructive testing

    Get PDF
    Non-destructive testing (NDT) and evaluation (NDE) are commonly referred to as the vast group of analysis techniques used in civil, medical, and industrial sectors to evaluate the properties of materials, tissues, components, or structures without causing any damage [...]

    Robotic path planning for non-destructive testing of complex shaped surfaces

    Get PDF
    The requirement to increase inspection speeds for non-destructive testing (NDT) of composite aerospace parts is common to many manufacturers. The prevalence of complex curved surfaces in the industry provides significant motivation for the use of 6 axis robots for deployment of NDT probes in these inspections. A new system for robot deployed ultrasonic inspection of composite aerospace components is presented. The key novelty of the approach is through the accommodation of flexible robotic trajectory planning, coordinated with the NDT data acquisition. Using a flexible approach in MATLAB, the authors have developed a high level custom toolbox that utilizes external control of an industrial 6 axis manipulator to achieve complex path planning and provide synchronization of the employed ultrasonic phase array inspection system. The developed software maintains a high level approach to the robot programming, in order to ease the programming complexity for an NDT inspection operator. Crucially the approach provides a pathway for a conditional programming approach and the capability for multiple robot control (a significant limitation in many current off-line programming applications). Ultrasonic and experimental data has been collected for the validation of the inspection technique. The path trajectory generation for a large, curved carbon-fiber-reinforced polymer (CFRP) aerofoil component has been proven and is presented. The path error relative to a raster-scan tool-path, suitable for ultrasonic phased array inspection, has been measured to be within ± 2mm over the 1.6 m2 area of the component surface

    Introducing a novel mesh following technique for approximation-free robotic tool path trajectories

    Get PDF
    Modern tools for designing and manufacturing of large components with complex geometries allow more flexible production with reduced cycle times. This is achieved through a combination of traditional subtractive approaches and new additive manufacturing processes. The problem of generating optimum tool-paths to perform specific actions (e.g. part manufacturing or inspection) on curved surface samples, through numerical control machinery or robotic manipulators, will be increasingly encountered. Part variability often precludes using original design CAD data directly for toolpath generation (especially for composite materials), instead surface mapping software is often used to generate tessellated models. However, such models differ from precise analytical models and are often not suitable to be used in current commercially available path-planning software, since they require formats where the geometrical entities are mathematically represented thus introducing approximation errors which propagate into the generated toolpath. This work adopts a fundamentally different approach to such surface mapping and presents a novel Mesh Following Technique (MFT) for the generation of tool-paths directly from tessellated models. The technique does not introduce any approximation and allows smoother and more accurate surface following tool-paths to be generated. The background mathematics to the new MFT algorithm are introduced and the algorithm is validated by testing through an application example. Comparative metrology experiments were undertaken to assess the tracking performance of the MFT algorithms, compared to tool-paths generated through commercial software. It is shown that the MFT tool-paths produced 40% smaller errors and up to 66% lower dispersion around the mean values

    Robotic path planning for non-destructive testing - a custom MATLAB toolbox approach

    Get PDF
    The requirement to increase inspection speeds for non-destructive testing (NDT) of composite aerospace parts is common to many manufacturers. The prevalence of complex curved surfaces in the industry provides motivation for the use of 6 axis robots in these inspections. The purpose of this paper is to present work undertaken for the development of a KUKA robot manipulator based automated NDT system. A new software solution is presented that enables flexible trajectory planning to be accomplished for the inspection of complex curved surfaces often encountered in engineering production. The techniques and issues associated with conventional manual inspection techniques and automated systems for the inspection of large complex surfaces were reviewed. This approach has directly influenced the development of a MATLAB toolbox targeted to NDT automation, capable of complex path planning, obstacle avoidance, and external synchronization between robots and associated external NDT systems. This paper highlights the advantages of this software over conventional off-line-programming approaches when applied to NDT measurements. An experimental validation of path trajectory generation, on a large and curved composite aerofoil component, is presented. Comparative metrology experiments were undertaken to evaluate the real path accuracy of the toolbox when inspecting a curved 0.5 m2 and a 1.6 m2 surface using a KUKA KR16 L6-2 robot. The results have shown that the deviation of the distance between the commanded TCPs and the feedback positions were within 2.7 mm. The variance of the standoff between the probe and the scanned surfaces was smaller than the variance obtainable via commercial path-planning software. Tool paths were generated directly on the triangular mesh imported from the CAD models of the inspected components without need for an approximating analytical surface. By implementing full external control of the robotic hardware, it has been possible to synchronise the NDT data collection with positions at all points along the path, and our approach allows for the future development of additional functionality that is specific to NDT inspection problems. For the current NDT application, the deviations from CAD design and the requirements for both coarse and fine inspections, dependent on measured NDT data, demand flexibility in path planning beyond what is currently available from existing off-line robot programming software

    Vision guided robotic inspection for parts in manufacturing and remanufacturing industry

    Get PDF
    Environmental and commercial drivers are leading to a circular economy, where systems and components are routinely recycled or remanufactured. Unlike traditional manufacturing, where components typically have a high degree of tolerance, components in the remanufacturing process may have seen decades of wear, resulting in a wider variation of geometries. This makes it difficult to translate existing automation techniques to perform Non-Destructive Testing (NDT) for such components autonomously. The challenge of performing automated inspections, with off-line tool-paths developed from Computer Aided Design (CAD) models, typically arises from the fact that those paths do not have the required level of accuracy. Beside the fact that CAD models are less available for old parts, these parts often differ from their respective virtual models. This paper considers flexible automation by combining part geometry reconstruction with ultrasonic tool-path generation, to perform Ultrasonic NDT. This paper presents an approach to perform custom vision-guided ultrasonic inspection of components, which is achieved through integrating an automated vision system and a purposely developed graphic user interface with a robotic work-cell. The vision system, based on structure from motion, allows creating 3D models of the parts. Also, this work compares four different tool-paths for optimum image capture. The resulting optimum 3D models are used in a virtual twin environment of the robotic inspection cell, to enable the user to select any points of interest for ultrasonic inspection. This removes the need of offline robot path-planning and part orientation for assessing specific locations on a part, which is typically a very time-consuming phase

    Generalised bisection method for optimum ultrasonic ray tracing and focusing in multi-layered structures

    Get PDF
    Ultrasonic testing has been used for many decades, proving itself very efficient for detecting defects in many industrial sectors. The desire to apply ultrasonic testing to geometrically complex structures, and to anisotropic, inhomogeneous materials, together with the advent of more powerful electronics and software, is constantly pushing the applicability of ultrasonic waves to their limits. General ray tracing models, suitable for calculating the proper incident angle of single element probes and the proper time delay of phased array, are currently required. They can support the development of new imaging techniques, as Full Matrix Capture and Total Focusing Method, and the execution of very challenging ultrasonic inspections. This paper introduces a generalized iterative method for the computation of ultrasonic ray paths, when ultrasonic source and target are separated by multiple complex material interfaces in the two dimensional and three dimensional domains. The manuscript starts with a review of the well-known bisection method, and extends the applicability of the method to cases with increasing complexity. An application example, in the field of in-process weld inspection, shows that the introduced generalised bisection method can enable the computation of optimum incidence angles and focal delays for accurate ultrasonic focusing. There is no restriction on the analytical interfaces to be surjective. Interface folding is permitted. It is not necessary to know, a priori, with what sequence the interfaces are crossed by the rays. The presented implementation of the method completes each iteration of the bisection method in 4 ms, for a case with a single interface, and in 960 ms for the case with 52 interfaces

    Solving ultrasonic ray tracing in parts with multiple material layers through root-finding methods

    Get PDF
    Ultrasonic testing has been used for material analysis and inspection since 1930's. Nevertheless, the applicability of ultrasonic waves to new complex cases is still growing, thanks to the availability of powerful electronics and software. However, the complication that slows down the deployment of ultrasonic inspection to geometric complex parts and structures arises from the wave refraction phenomenon. A clear understanding of the ultrasound wave propagation, impacted by refractions, is crucial to interpret the data obtained from the inspection of multi-layered/multi-medium test subjects as it is not always possible to assume that mechanical waves travel in straight lines. This work presents suitable approaches for solving the ray-tracing problem in multi-layered structures. Accurate benchmarking shows that the use of the Newton-Raphson root-finding method allows a threefold reduction of the computation time, when compared to the bisection-based root-finding methods. An effective combination of the Newton-Raphson methods with bisection-type iterations is also proposed and discussed. Although the work repeatedly refers to the field of ultrasonic inspection, the presented findings are relevant and applicable to areas beyond material inspection

    Index based triangulation method for efficient generation of large three-dimensional ultrasonic C-scans

    Get PDF
    The demand for high speed ultrasonic scanning of large and complex components is driven by a desire to reduce production bottlenecks during the non-destructive evaluation of critical parts. Emerging systems (including robotic inspection) allow the collection of large data volumes in short time spans, compared to existing inspection systems. To maximize throughput, it is crucial that the reconstructed inspection data sets are generated and evaluated rapidly without a loss of detail. This requires new data visualization and analysis tools capable of mapping complex geometries whilst guaranteeing full part coverage. This paper presents an entirely new approach for the visualization of three-dimensional ultrasonic C-scans, suitable for application to high data throughput ultrasonic phased array inspection of large and complex parts. Existing reconstruction approaches are discussed and compared with the new Index Based Triangulation (IBT) method presented. The IBT method produces 3D C-scan representation, presented as coloured tessellated surfaces, and the approach is shown to work efficiently even on challenging geometry. An additional differentiating characteristic of the IBT method is that it allows easy detection of lack of coverage (an essential feature to ensure that inspection coverage can be guaranteed on critical components). Results demonstrate that the IBT C-scan generation approach runs over 60 times faster than a C-scan display based on Delaunay triangulation and over 500 times faster than surface reconstruction C-scans. In summary the main benefits of the new IBT technique are: • High speed generation of C-scans on large ultrasonic data sets (orders of magnitude improvement over surface reconstruction C-Scans) • Ability to operate efficiently on 3D mapped data sets (allowing 3D interpretation of C scans on complex geometry components) • Intrinsic indication of lack of inspection coverag
    • …
    corecore